p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24⋊8D4, C25.35C22, C24.247C23, C23.310C24, C22.1262+ 1+4, C2.8D42, (C2×D4)⋊43D4, C22⋊C4⋊32D4, (D4×C23)⋊4C2, C22⋊1C22≀C2, C23⋊2D4⋊7C2, C24⋊3C4⋊13C2, C22⋊5(C4⋊D4), (C23×C4)⋊21C22, C23.151(C2×D4), (C22×D4)⋊4C22, C2.16(D4⋊5D4), C23.10D4⋊7C2, C2.8(C23⋊3D4), C23.8Q8⋊26C2, C23.298(C4○D4), C23.23D4⋊25C2, (C22×C4).791C23, C22.190(C22×D4), C2.C42⋊18C22, (C2×C4)⋊9(C2×D4), (C2×C4⋊D4)⋊4C2, (C2×C22≀C2)⋊5C2, (C2×C4⋊C4)⋊11C22, C2.14(C2×C4⋊D4), C2.17(C2×C22≀C2), (C2×C22⋊C4)⋊12C22, (C22×C22⋊C4)⋊17C2, C22.189(C2×C4○D4), SmallGroup(128,1142)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24⋊8D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=f2=1, ab=ba, eae-1=ac=ca, ad=da, faf=acd, ebe-1=fbf=bc=cb, bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 1412 in 623 conjugacy classes, 132 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C24, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22≀C2, C4⋊D4, C23×C4, C23×C4, C22×D4, C22×D4, C22×D4, C25, C24⋊3C4, C23.8Q8, C23.23D4, C23.23D4, C23⋊2D4, C23.10D4, C22×C22⋊C4, C2×C22≀C2, C2×C4⋊D4, D4×C23, C24⋊8D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22≀C2, C4⋊D4, C22×D4, C2×C4○D4, 2+ 1+4, C2×C22≀C2, C2×C4⋊D4, C23⋊3D4, D42, D4⋊5D4, C24⋊8D4
(1 11)(2 8)(3 9)(4 6)(5 21)(7 23)(10 22)(12 24)(13 20)(14 30)(15 18)(16 32)(17 26)(19 28)(25 29)(27 31)
(1 25)(2 14)(3 27)(4 16)(5 18)(6 32)(7 20)(8 30)(9 31)(10 19)(11 29)(12 17)(13 23)(15 21)(22 28)(24 26)
(1 23)(2 24)(3 21)(4 22)(5 9)(6 10)(7 11)(8 12)(13 25)(14 26)(15 27)(16 28)(17 30)(18 31)(19 32)(20 29)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 2)(3 4)(5 17)(6 20)(7 19)(8 18)(9 30)(10 29)(11 32)(12 31)(13 14)(15 16)(21 22)(23 24)(25 26)(27 28)
G:=sub<Sym(32)| (1,11)(2,8)(3,9)(4,6)(5,21)(7,23)(10,22)(12,24)(13,20)(14,30)(15,18)(16,32)(17,26)(19,28)(25,29)(27,31), (1,25)(2,14)(3,27)(4,16)(5,18)(6,32)(7,20)(8,30)(9,31)(10,19)(11,29)(12,17)(13,23)(15,21)(22,28)(24,26), (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,4)(5,17)(6,20)(7,19)(8,18)(9,30)(10,29)(11,32)(12,31)(13,14)(15,16)(21,22)(23,24)(25,26)(27,28)>;
G:=Group( (1,11)(2,8)(3,9)(4,6)(5,21)(7,23)(10,22)(12,24)(13,20)(14,30)(15,18)(16,32)(17,26)(19,28)(25,29)(27,31), (1,25)(2,14)(3,27)(4,16)(5,18)(6,32)(7,20)(8,30)(9,31)(10,19)(11,29)(12,17)(13,23)(15,21)(22,28)(24,26), (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,4)(5,17)(6,20)(7,19)(8,18)(9,30)(10,29)(11,32)(12,31)(13,14)(15,16)(21,22)(23,24)(25,26)(27,28) );
G=PermutationGroup([[(1,11),(2,8),(3,9),(4,6),(5,21),(7,23),(10,22),(12,24),(13,20),(14,30),(15,18),(16,32),(17,26),(19,28),(25,29),(27,31)], [(1,25),(2,14),(3,27),(4,16),(5,18),(6,32),(7,20),(8,30),(9,31),(10,19),(11,29),(12,17),(13,23),(15,21),(22,28),(24,26)], [(1,23),(2,24),(3,21),(4,22),(5,9),(6,10),(7,11),(8,12),(13,25),(14,26),(15,27),(16,28),(17,30),(18,31),(19,32),(20,29)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,2),(3,4),(5,17),(6,20),(7,19),(8,18),(9,30),(10,29),(11,32),(12,31),(13,14),(15,16),(21,22),(23,24),(25,26),(27,28)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 2P | ··· | 2U | 2V | 4A | ··· | 4L | 4M | 4N | 4O |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 4 | ··· | 4 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C4○D4 | 2+ 1+4 |
kernel | C24⋊8D4 | C24⋊3C4 | C23.8Q8 | C23.23D4 | C23⋊2D4 | C23.10D4 | C22×C22⋊C4 | C2×C22≀C2 | C2×C4⋊D4 | D4×C23 | C22⋊C4 | C2×D4 | C24 | C23 | C22 |
# reps | 1 | 1 | 1 | 3 | 2 | 2 | 1 | 2 | 2 | 1 | 4 | 8 | 4 | 4 | 2 |
Matrix representation of C24⋊8D4 ►in GL6(ℤ)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 2 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | -2 |
0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 2 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | -2 | 0 | 0 | 0 | 0 |
1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
-1 | 2 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | -1 | 1 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,2,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,-2,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,2,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,1,0,0,0,0,-2,-1,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,1] >;
C24⋊8D4 in GAP, Magma, Sage, TeX
C_2^4\rtimes_8D_4
% in TeX
G:=Group("C2^4:8D4");
// GroupNames label
G:=SmallGroup(128,1142);
// by ID
G=gap.SmallGroup(128,1142);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,758,723,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,f*a*f=a*c*d,e*b*e^-1=f*b*f=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations